EXAMPLE 5 Model a dropped object with a quadratic function

SCIENCE COMPETITION For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground?

: ANOTHER WAY

For alternative methods for solving the problem in Example 5, turn to page 272 for the **Problem Solving** Workshop.

Solution

$$h=-16t^2+h_0$$
 Write height function.
 $0=-16t^2+50$ Substitute 0 for h and 50 for h_0 .

$$-50 = -16t^2$$
 Subtract 50 from each side.

$$\frac{50}{16} = t^2$$
 Divide each side by -16.

$$\pm\sqrt{\frac{50}{16}}=t$$
 Take square roots of each side.

$$\pm 1.8 \approx t$$
 Use a calculator.

After a successful egg drop

▶ Reject the negative solution, −1.8, because time must be positive. The container will fall for about 1.8 seconds before it hits the ground.

Animated Algebra at classzone.com

GUIDED PRACTICE for Example 5

20. WHAT IF? In Example 5, suppose the egg container is dropped from a height of 30 feet. How long does the container take to hit the ground?

4.5 EXERCISES

HOMEWORK

= WORKED-OUT SOLUTIONS on p. WS8 for Exs. 17, 27, and 41

= STANDARDIZED TEST PRACTICE Exs. 2, 19, 34, 35, 36, 40, and 41

SKILL PRACTICE

- **1. VOCABULARY** In the expression $\sqrt{72}$, what is 72 called?
- 2. * WRITING Explain what it means to "rationalize the denominator" of a quotient containing square roots.

EXAMPLES 1 and 2

on pp. 266-267 for Exs. 3-20

SIMPLIFYING RADICAL EXPRESSIONS Simplify the expression.

3.
$$\sqrt{28}$$

5.
$$\sqrt{150}$$

6.
$$\sqrt{3} \cdot \sqrt{27}$$

7.
$$4\sqrt{6} \cdot \sqrt{6}$$

8.
$$5\sqrt{24} \cdot 3\sqrt{10}$$
 9. $\sqrt{\frac{5}{16}}$

9.
$$\sqrt{\frac{5}{16}}$$

10.
$$\sqrt{\frac{35}{36}}$$

11.
$$\frac{8}{\sqrt{3}}$$

12.
$$\frac{7}{\sqrt{12}}$$
 13. $\sqrt{\frac{18}{11}}$

13.
$$\sqrt{\frac{18}{11}}$$

14.
$$\sqrt{\frac{13}{28}}$$

15.
$$\frac{2}{1-\sqrt{3}}$$

16.
$$\frac{1}{5+\sqrt{6}}$$

15.
$$\frac{2}{1-\sqrt{3}}$$
 16. $\frac{1}{5+\sqrt{6}}$ 17. $\frac{\sqrt{2}}{4+\sqrt{5}}$

18.
$$\frac{3+\sqrt{7}}{2-\sqrt{10}}$$

19. \star MULTIPLE CHOICE What is a completely simplified expression for $\sqrt{108}$?

 \bigcirc $2\sqrt{27}$

(B) $3\sqrt{12}$

 $(\hat{\mathbf{C}})$ $6\sqrt{3}$

(D) $10\sqrt{8}$

ERROR ANALYSIS Describe and correct the error in simplifying the expression or solving the equation.

20.

$$\sqrt{96} = \sqrt{4} \cdot \sqrt{24}$$

$$= 2\sqrt{24}$$

$$6x^2 = 405$$

 $x^2 = 81$
 $x = 9$

EXAMPLES 3 and 4

on pp. 267-268 for Exs. 21-34

SOLVING QUADRATIC EQUATIONS Solve the equation.

22.
$$s^2 = 169$$

23.
$$a^2 = 50$$

24.
$$x^2 = 84$$

25.
$$6z^2 = 150$$

26.
$$4p^2 = 448$$

$$(27.)$$
 $-3w^2 = -2$

28.
$$7r^2 - 10 = 25$$

25.
$$6z^2 = 150$$
 26. $4p^2 = 448$ **27.** $-3w^2 = -213$ **28.** $7r^2 - 10 = 25$ **29.** $\frac{x^2}{25} - 6 = -2$ **30.** $\frac{t^2}{20} + 8 = 15$

30.
$$\frac{t^2}{20} + 8 = 1$$

31.
$$4(x-1)^2 = 8$$

31.
$$4(x-1)^2 = 8$$
 32. $7(x-4)^2 - 18 = 10$ **33.** $2(x+2)^2 - 5 = 8$

33.
$$2(x+2)^2 - 5 = 8$$

34. \star MULTIPLE CHOICE What are the solutions of $3(x+2)^2+4=13$?

$$\bigcirc$$
 -5, 1

(C)
$$-2 \pm \sqrt{3}$$
 (D) $2 \pm \sqrt{3}$

(D)
$$2 \pm \sqrt{3}$$

- 35. ★ SHORT RESPONSE Describe two different methods for solving the equation $x^2 - 4 = 0$. Include the steps for each method.
- 36. \star OPEN-ENDED MATH Write an equation of the form $x^2 = s$ that has (a) two real solutions, (b) exactly one real solution, and (c) no real solutions.
- **37. CHALLENGE** Solve the equation $a(x + b)^2 = c$ in terms of a, b, and c.

PROBLEM SOLVING

EXAMPLE 5 on p. 269 for Exs. 38-39 38. CLIFF DIVING A cliff diver dives off a cliff 40 feet above water. Write an equation giving the diver's height *h* (in feet) above the water after *t* seconds. How long is the diver in the air?

@HomeTutor for problem solving help at classzone.com

39. ASTRONOMY On any planet, the height h (in feet) of a falling object t seconds after it is dropped can be modeled by $h = -\frac{g}{2}t^2 + h_0$ where h_0 is the object's initial height (in feet) and g is the acceleration (in feet per second squared) due to the planet's gravity. For each planet in the table, find the time it takes for a rock dropped from a height of 150 feet to hit the surface.

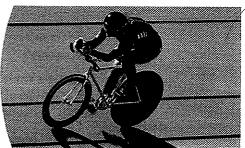
Planet	Earth	Mars	Jupiter	Saturn	Pluto
g (ft/sec²)	32	12	76	30	2

@HomeTutor for problem solving help at classzone.com

- **40. \star SHORT RESPONSE** The equation $h = 0.019s^2$ gives the height h (in feet) of the largest ocean waves when the wind speed is s knots. Compare the wind speeds required to generate 5 foot waves and 20 foot waves.
 - ★ EXTENDED RESPONSE You want to transform a square gravel parking lot with 10 foot sides into a circular lot. You want the circle to have the same area as the square so that you do not have to buy any additional gravel.

- a. Model Write an equation you can use to find the radius r of the circular lot.
- b. Solve What should the radius of the circular lot be?
- c. Generalize In general, if a square has sides of length s, what is the radius r of a circle with the same area? Justify your answer algebraically.

- **42. BICYCLING** The air resistance R (in pounds) on a racing cyclist is given by the equation $R = 0.00829s^2$ where s is the bicycle's speed (in miles per hour).
 - a. What is the speed of a racing cyclist who experiences 5 pounds of air resistance?
 - **b.** What happens to the air resistance if the cyclist's speed doubles? Justify your answer algebraically.



43. CHALLENGE For a swimming pool with a rectangular base, Torricelli's law implies that the height h of water in the pool t seconds after it begins

draining is given by $h = \left(\sqrt{h_0} - \frac{2\pi d^2\sqrt{3}}{lw}t\right)^2$ where l and w are the pool's

length and width, d is the diameter of the drain, and h_0 is the water's initial height. (All measurements are in inches.) In terms of l, w, d, and h_0 , what is the time required to drain the pool when it is completely filled?

MIXED REVIEW

PREVIEW

Prepare for Lesson 4.6 in Exs. 44-51. Evaluate the power. (p. 10)

44.
$$(-5)^2$$

45.
$$(-4)^2$$
 46. $(-8)^2$ **47.** $(-13)^2$ **49.** -11^2 **50.** -15^2 **51.** -7^2

46.
$$(-8)^2$$

48.
$$-3^2$$

49.
$$-11^2$$

Solve the equation or inequality.

52.
$$x - 8 = 2$$
 (p. 18)

53.
$$3x + 4 = 13$$
 (p. 18)

54.
$$2x - 1 = 6x + 3$$
 (p. 18)

55.
$$x + 9 > 5$$
 (p. 41)

56.
$$-7x - 15 \ge 6$$
 (p. 41)

57.
$$3 - 6x \le 23 - 10x$$
 (n. 41)

58.
$$|x + 12| = 5$$
 (n 51)

59.
$$|-2 + 3x| = 10$$
 (p. 51)

55.
$$x + 9 > 5$$
 (p. 41) 56. $-7x - 15 \ge 6$ (p. 41) 57. $3 - 6x \le 23 - 10x$ (p. 41) 58. $|x + 12| = 5$ (p. 51) 59. $|-2 + 3x| = 10$ (p. 51) 60. $\left|\frac{1}{2}x + 9\right| \ge 4$ (p. 51)

In Exercises 61 and 62, (a) draw a scatter plot of the data, (b) approximate the best-fitting line, and (c) estimate y when x = 20. (p. 113)

61

x	-4	-3	0	2	5
y	5	9	28	33	39

,	x	1	2	3	4	5
	у	120	91	58	31	5